互联网金融行业申请评分卡(A卡)简介

前言

最近会总结下我了解到的互金行业各个评分卡的知识,包括但不限于A,B,C卡以及相关的业务知识和用到的技术。很早之前就有这样的想法,最近刚好有这样的机会,就简单记录下。如果有问题,请大家及时指正。

基本概念

1、信用违约风险的基本概念

什么是信用违约风险:

定义:交易对手未能履行约定契约中的义务而造成经济损失的风险 ,即受信人不能履行还本付息的责任而使授信人的预期收益与实际收益发生偏离的可能性,它是金融风险的主要类型。
一句话总结:未在规定时间内还钱给借钱人造成的风险。这里面有一个很重要的隐变量时间。任何资金的使用都是有时间成本!

组成部分

PD 违约概率(probability of default, PD) :用户在当前正常还款的条件下未来可能发生违约的概率,是一个条件概率。
LGD 违约条件下的损失率 (LGD,loss given default):在当前已经违约的条件下,未来可能会损失的概率。(也就是催收会让多少客户还钱,还有多少钱催不回来了。)
EAD 违约风险下的敞口暴露
RWA 风险权重资产
EL 期望损失

违约的主体

个人:
公司:公司借钱后违约,公司发行债券后违约
国家:国家发行债券后不能偿还本金及利息的违约

个贷中常用的违约定义

  • M3 & M3+ 逾期 (M的定义在各个产品的中不同,如M3在长期贷款(产品期次大于12期以上的产品)指超过三个月以上都没有还钱)
  • 债务重组: 借款人发生财务困难,通过其他形式来偿还债务:如以资产抵押,修改债务条件等。将债务重新组合。
  • 个人破产:个人申请破产后,金融机构无法向债务人进行债务追偿。也被视为违约
  • 银行主动关户或注销 :如洗钱
  • 其他相关违法行为

M0,M1,M2的定义

M0:最后缴款日的第二天到下一个账单日即下一个还款日 (还款日到还款日+一个月+一天的时间段内没有还钱则称为M0逾期)
M1:M0时段的延续,即在未还款的第二个账单日到第二次账单的最后缴款日之间(在M0基础之上再加一个月)
M2:M1的延续,即在未还款的第三个账单日到第三次账单的最后缴款日之间

2、申请评分卡的重要性和特性

信贷场景中的评分卡

  • 以分数的形式来衡量风险几率的一种手段
  • 是对未来一段时间内违约/逾期/失联概率的预测
  • 有一个明确的(正)区间
  • 通常分数越高越安全 (分数与逾期率成反比)
  • 数据驱动
  • 反欺诈评分卡、申请评分卡(反欺诈和申请都处在申请环节)、行为评分卡(行为处在监控环节)、催收评分卡(催收处在逾期管理环节)

申请评分卡的概念

定义:用在申请环节,以申请者在申请当日及过去的信息为基础, 预测未来放款后的逾期或者违约概率 (是条件概率:以申请前的各种信息来预测放款后是否会发生违约)

为什么要开发申请评分卡

  • 风险控制:借贷生命周期的第一个关口(贷款人的第一个评分步骤)
  • 营销:优质客户识别
  • 资本管理:可作为PD模型的一个因子

评分卡的特性 (一个人的信用分数由两部分组成:还款能力和还款意愿)

  • 稳定性:当总体逾期/违约概率不变时,分数的分布也应不变
  • 区分性:违约人群与正常人群的分数应当有显著差异
  • 预测能力:低分人群的违约率更高
  • 和逾期概率等价:评分可以精准地反映违约/逾期概率,反之亦然
    一个好的评分卡模型的数据分布应该有以上几个特点

贷前准入环节中申请评分卡的流程

在这里插入图片描述

总结:

A卡算是整个风控的入口,所以重要性可想而知,但是能够在实际中用A卡完全代替传统的风控规则引擎的应该不多,原因有两点:1、相比较于A卡,传统风控规则效果更好。2、金融业比较保守(特别是对于A卡,试错成本较高)!

对于A卡的一些想法:个人觉得A卡目前适合各种风控团队做实验,但是最好不要把A卡当做重要的公司或团队目标来做,因为就算做出来,并且效果不错,也不一定能用。
为什么?因为A卡的效果要往往比实际的传统风控引擎的效果差点,即使两者的效果很接近,中间还要计算两种方案对应的成本(包括人力成本<风控规则牵涉到比较多的人力成本如各种政策,风险分析师等;而A卡相对来说需要的人力较少>,资金成本<比如两种方案对应的坏账率的差距等>。只有A卡赚的人力成本能够弥补亏的资金成本才能考虑做这样的方案替换,但是现实中资金成本是随着贷款量越来越大,所以一般A卡的方案不可行)。
所以个人觉得无论对于公司还是风控团队来说,做A卡的风险高,成本高,且实际收益可能会很低。可以考虑从B卡,C卡等入手,先做些成绩,然后再探索A卡的制作。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页